A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization
نویسندگان
چکیده
Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.
منابع مشابه
COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolutionary computation
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2002